A spatial dirichlet process mixture model for clustering population genetics data.

نویسندگان

  • Brian J Reich
  • Howard D Bondell
چکیده

Identifying homogeneous groups of individuals is an important problem in population genetics. Recently, several methods have been proposed that exploit spatial information to improve clustering algorithms. In this article, we develop a Bayesian clustering algorithm based on the Dirichlet process prior that uses both genetic and spatial information to classify individuals into homogeneous clusters for further study. We study the performance of our method using a simulation study and use our model to cluster wolverines in Western Montana using microsatellite data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Bayesian speaker clustering based on hierarchically structured utterance-oriented Dirichlet process mixture model

We have proposed a novel speaker clustering method based on a hierarchically structured utterance-oriented Dirichlet process mixture model. In the proposed method, the number of speakers can be determined from the given data using a nonparametric Bayesian manner and intra-speaker variability is successfully handled by multi-scale mixture modeling. Experimental result showed that the proposed me...

متن کامل

Clustering based on Dirichlet mixtures of attribute ensembles

We propose a model-based approach to identifying clusters of objects based on subsets of attributes, so that the attributes that distinguish a cluster from the rest of the population, called an attribute ensemble, may depend on the cluster being considered. The model is based on a Pólya urn cluster model, which is equivalent to a Dirichlet process mixture of multivariate normal distributions. T...

متن کامل

Model-based subspace clustering

We discuss a model-based approach to identifying clusters of objects based on subsets of attributes, so that the attributes that distinguish a cluster from the rest of the population may depend on the cluster being considered. The method is based on a Pólya urn cluster model for multivariate means and variances, resulting in a multivariate Dirichlet process mixture model. This particular model-...

متن کامل

Graphically dependent and spatially varying Dirichlet process mixtures

We consider the problem of clustering grouped and functional data, which are indexed by a covariate, and assessing the dependency of the clustered groups on the covariate. We assume that each observation within a group is a draw from a mixture model. The mixture components and the number of such components can change with the covariate, and are assumed to be unknown a priori. In addition to lea...

متن کامل

Bayesian Order-Adaptive Clustering for Video Segmentation

Video segmentation requires the partitioning of a series of images into groups that are both spatially coherent and smooth along the time axis. We formulate segmentation as a Bayesian clustering problem. Context information is propagated over time by a conjugate structure. The level of segment resolution is controlled by a Dirichlet process prior. Our contributions include a conjugate nonparame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrics

دوره 67 2  شماره 

صفحات  -

تاریخ انتشار 2011